Jordan mappings in rings and algebras

SHAKIR ALI

The Department of Mathematics Faculty of Science Aligarh Muslim University Aligarh-202002, INDIA E-mail:shakir.ali.mm@amu.ac.in

Let R be an associative ring. For any $x, y \in R$, as usual the symbols $x \circ y$ and [x, y] will denote the anti-commutator xy + yx and commutator xy - yx and called Jordan product and Lie product, respectively. Recall that a map f of a ring R into itself is said to be additive if f(x + y) = f(x) + f(y) for all $x, y \in R$. An additive map $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. An additive map $d: R \to R$ is called a Jordan derivation if $d(x^2) = d(x)x + xd(x)$ holds for all $x \in R$. An additive map $x \mapsto x^*$ of R into itself is called an involution if $(i) (xy)^* = y^*x^*$ and $(ii) (x^*)^* = x$ hold for all $x, y \in R$. A ring equipped with an involution is known as a ring with involution or a *-ring. An additive map $d: R \to R$ is called a Jordan *-derivation if $d(x^2) = d(x)x^* + xd(x)$ holds for all $x \in R$.

In this talk, I will review some recent results of myself and collaborations in certain class rings involving these mappings. Moreover, some examples and counter examples will be discussed for questions raised naturally.

2010 Mathematics Subject Classification: 16W25, 16N60, 16U80

Key Words: Semi(prime) ring, derivation, Jordan derivation, Jordan *-derivation, Jordan centralizers, generalized Jordan derivations