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Let R be an associative ring. For any x, y ∈ R, as usual the symbols x ◦ y
and [x, y] will denote the anti-commutator xy+yx and commutator xy−yx and
called Jordan product and Lie product, respectively. Recall that a map f of a
ring R into itself is said to be additive if f(x+ y) = f(x)+ f(y) for all x, y ∈ R.
An additive map d : R→ R is called a derivation if d(xy) = d(x)y+xd(y) holds
for all x, y ∈ R. An additive map d : R → R is called a Jordan derivation if
d(x2) = d(x)x + xd(x) holds for all x ∈ R. An additive map x 7→ x∗ of R into
itself is called an involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all
x, y ∈ R. A ring equipped with an involution is known as a ring with involution
or a ∗-ring. An additive map d : R → R is called a Jordan ∗-derivation if
d(x2) = d(x)x∗ + xd(x) holds for all x ∈ R.

In this talk, I will review some recent results of myself and collaborations
in certain class rings involving these mappings. Moreover, some examples and
counter examples will be discussed for questions raised naturally.
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